If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-15w-20=0
a = 5; b = -15; c = -20;
Δ = b2-4ac
Δ = -152-4·5·(-20)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-25}{2*5}=\frac{-10}{10} =-1 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+25}{2*5}=\frac{40}{10} =4 $
| 5x/2+1/4=4 | | -3(8p+7)=29+p | | 4{(w-6)=3(+1) | | 5.7x+53=7.2x+14 | | -6(y+1)=-2y-8-4y | | 6(-4m+1)+7(7m+5)=-34 | | 119-×=3x+11 | | 5.7x=53=7.2x+14 | | 6(3+8a)=18+a | | 6x+140=180 | | 3(7)^4x=15 | | 4.52-5h=5.2 | | -5(-3x+4)+10x=25+10x | | 78=-2(x-5)-6(x-2) | | -5h-10+h=10-9h | | 9x-19=7x=11 | | 5-7x=14-6x | | n^2-8n-65=0 | | 7(5b-4)=38+2b | | 40+10y=-10y | | 24+6r=-4(r-6) | | 10x-5x=-4+x-2+3x | | 25+2x=5x+5+2x | | 9x-1=8x | | 5(z-9)+3=-17 | | 8w−5w=9 | | 3x-5-x=3+x-2 | | 8(v-5)=16 | | -13+9r+3+1=10r-1 | | -13+9r+3+-1=10r-1 | | 5d-d=-0 | | 12-3(4x=3)=-2x=23 |